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Abstract. Possibilities of fluid–solid and solid–solid phase transformations in colloidal suspen-
sions and star polymer solutions are reviewed. We start from given interparticle pair potentials
and predict the corresponding phase diagrams using computer simulations and density functional
theory. When possible, the results are compared with experimental data. In particular, we discuss
a cascade of freezing transitions for confined colloids and re-entrant melting and anisotropic solid
phases for star polymer solutions.

In this paper we review recent work concerning unexpected phase behaviour for peculiar
pair potentials which are realized for colloidal suspensions and star polymer solutions. We
first discuss sterically stabilized colloids between two parallel glass plates modelled by hard
spheres confined between two hard walls. A rich phase diagram including different layering
transitions is obtained. Then we investigate the phase behaviour of a very soft potential
diverging logarithmically with distance r at the origin. This potential is realized for star
polymers in the scaling regime. The theoretical tools used to calculate the phase behaviour
are computer simulations, liquid integral equations and solid-cell models.

The model that we discuss for freezing in slit pores consists of hard spheres of diameter
σ confined between two parallel plates of distance H . The thermostatistical properties in
equilibrium depend solely on two parameters, namely the reduced density ρH = Nσ 3/(AH)

(where N is the number of spheres and A the system area) and the reduced plate separation
h = H/σ − 1. Clearly one can continuously interpolate between two and three spatial
dimensions by tuning the plate separation: for H = σ , our model reduces to that of two-
dimensional hard discs, while for H → ∞, the three-dimensional bulk case is recovered.

The equilibrium phase diagram as obtained by Monte Carlo computer simulation in the
ρH –h plane [1, 2] is shown in figure 1 for moderate plate separations h. The phase behaviour
is very rich and much more complicated than in the bulk. Cascades of different solid–solid
transitions are found. For low densities the stable phase is an inhomogeneous fluid. All possible
stable solid phases are also realized as close-packed configurations [3, 4] for a certain plate
separation. Accordingly one finds stable layered structures involving intersecting triangular
lattices (1�, 2�) and intersecting square lattices (2�). Also a buckled phase (b) and a phase
with a rhombic elementary cell (the rhombic phase (r)) are stable. All transitions are first order.

Similar phases were found in experiments on highly salted charged colloids between glass
plates [5–7]. Here even higher reduced plate separations were studied. There is compelling
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Figure 1. The phase diagram for hard spheres of reduced density ρH between parallel plates
with effective reduced separation h. Symbols indicate different system sizes: N = 192 (+); N =
384, 512 (�); N = 576 (�· ); N = 1024, 1156 (�). Six phases occur (fluid, 1�, b, 2�, r and 2�).
The close-packing density is marked by a dashed line. Solid lines are guides to the eye. Thin
horizontal lines represent two-phase coexistence. From references [1, 2].

evidence that a prism phase consisting of alternating prisms built up from spheres is the close-
packed configuration in certain domains of h [7]. Still a full quantitative mapping of the
experimental data onto the theoretical phase digram of figure 1 has to be performed.

Let us comment on further related aspects of the model.

(a) First, it would be nice to perform a full theoretical calculation for the phase diagram of hard
spheres between hard plates. It has already been shown that a solid-cell theory combined
with a simple fluid-state free energy gives the same topology of phase behaviour [1,2]. It
would be interesting to do a density functional calculation, e.g. with Rosenfeld’s functional
which possesses the correct geometry excluding configurations of overlapping spheres [8].

(b) Second, one should investigate different confining shapes. Intriguing examples are circular
and polyhedral boundaries in two dimensions. Studies have been made for confined hard
discs [9] and for magnetic colloids in several geometries [10].

(c) Third, similar layering transitions occur for charged systems, such as confined elec-
trons [11] or plasma sheets [12].

We also note that one should investigate in more detail the stability of phases with long-range
orientational order decaying algebraically for large distances. Apart from the well-known
hexatic phase, also conceivable are ‘tetratic’ or ‘duatic’ phases, where fourfold and twofold
symmetry, respectively, persists over large distances. Finally, rigorously establishing the close-
packed structure for different h remains an unsolved mathematical problem. Only in the bulk
cases has this been achieved [13], although there are more results [14] for finite hard-sphere
systems in confinements differing from the two-plate situation considered here.

Let us now turn to star polymer solutions. A star polymer consists of f linear polymer
chains that are attached to a common microscopic core [15]. The typical extension of such
a star in a good solvent is governed by the so-called corona diameter σ , which measures the
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spatial extension of the monomer density around a single star. In a concentrated solution with
a finite star number density ρ, the stars are interacting. The interaction is repulsive due to the
restriction of allowed configurations for the polymer chains from different centres. In a first
approximation, the interaction is pairwise. An explicit form for the pair potential V (r) (where
r denotes the interparticle distance) was proposed recently: it consists of an ultrasoft part
inside the coronae and falls off exponentially with core–core distance r outside the coronae of
two stars. In detail,

V (r) =
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Here kBT is the thermal energy and f is the arm number of a single star. As the effective
interaction is purely entropic, it simply scales with the thermal energy. There are many facts
confirming that this pair potential (equation (1)) provides for a reasonable description of the
effective interaction between the stars:

(i) The behaviour for very small r (r 
 σ ) is consistent with scaling theory [16, 17].
(ii) Microscopic molecular dynamics computer simulations have been performed for several

values of f and different numbers of monomers per chains [18]. They reproduce perfectly
the overall shape of the effective interaction.

(iii) The scattering intensity for small-angle neutron scattering data could be well described
by this pair potential without any fitting parameter for an 18-arm star [17, 19].

On the basis of Monte Carlo computer simulations for the pair potential (1), the phase
diagram of star polymer solutions was calculated recently [20]. For the plane spanned by the
reduced density η = πρσ 3/6 and the inverse arm number 1/f , the results are displayed in
figure 2. Remarkably, there is no freezing below a critical arm number fc ≈ 34. For f > fc

there is freezing, with increasing density, into a bcc lattice, which then remelts upon further
compression. This is in accordance with an earlier qualitative analysis of Witten et al [21]. For
higher arm numbers, freezing into an fcc lattice occurs, since the potential is becoming steeper
as f is increasing. For higher densities, however, there are less common solid structures:

Figure 2. The phase diagram of star polymer solutions for different arm numbers f versus reduced
density η. The squares are the results from computer simulation and mark coexistence conditions.
The lines are a guide to the eye.
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an anisotropic body-centred orthogonal phase as well as a diamond lattice become stable.
This is the first time that such crystal structures have been determined to be stable for radially
symmetric pair potentials. Obviously this is due to the ultrasoft core together with the crossover
at distances comparable to the corona diameter of the stars [20]. A very peculiar behaviour
occurs for intermediate arm number f ≈ 48: increasing the density, the system first freezes,
then remelts, then refreezes. Such behaviour has also been found experimentally in spherical
diblock copolymer micelles by Gast and co-workers [22].

Apart from the full experimental verification of the phase diagram, there is still the
theoretical question of the relevance of triplet and other many-body interactions for higher
densities. Recent calculations, based on scaling theory and computer simulation, have shown,
however, that the triplet contributions are negligibly small [23]. We finally remark that the
interaction depends sensitively on the solvent quality and on the nature of the polymer chains
adsorbed onto the core. For a poor solvent close to the so-called � conditions, the potential
has a completely different form [24]. If a polyelectrolyte such as gelatin is adsorbed instead
of a neutral chain, again the effective interaction changes completely [25].

In conclusion, colloidal suspensions are ideal model systems for studying phase
transformations. Since their effective interactions are tunable and their confinement is well
controlled, a wealth of novel phase transitions can be observed. We also mention recent studies
concerning the stability of one-component colloidal quasicrystals [26] and phase transitions in
tobacco-mosaic-virus suspensions leading to liquid-crystalline phases [27]. It is remarkable
that most of the progress in this field has been achieved through a fruitful collaboration between
theory, computer simulations and experiment. Accepting this as established, we hope that the
theoretical phase diagrams discussed in this paper can be verified (or disproved) for actual
samples and that further interesting phases will be found which both enhance our fundamental
understanding of mesoscopic matter and lead to new exciting applications.
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